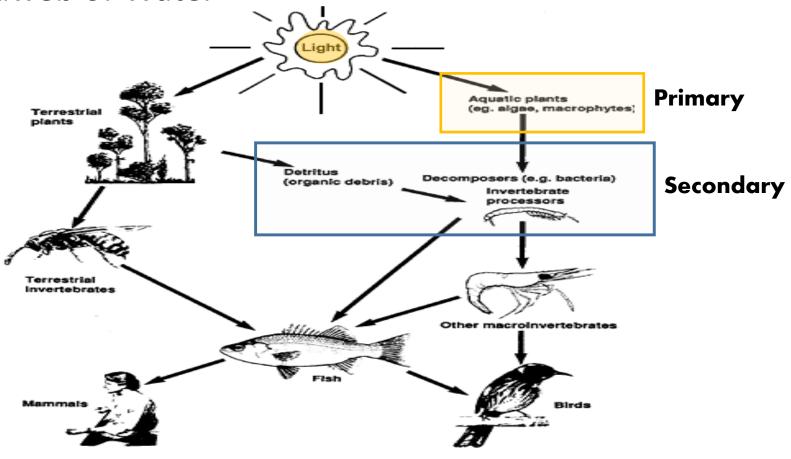
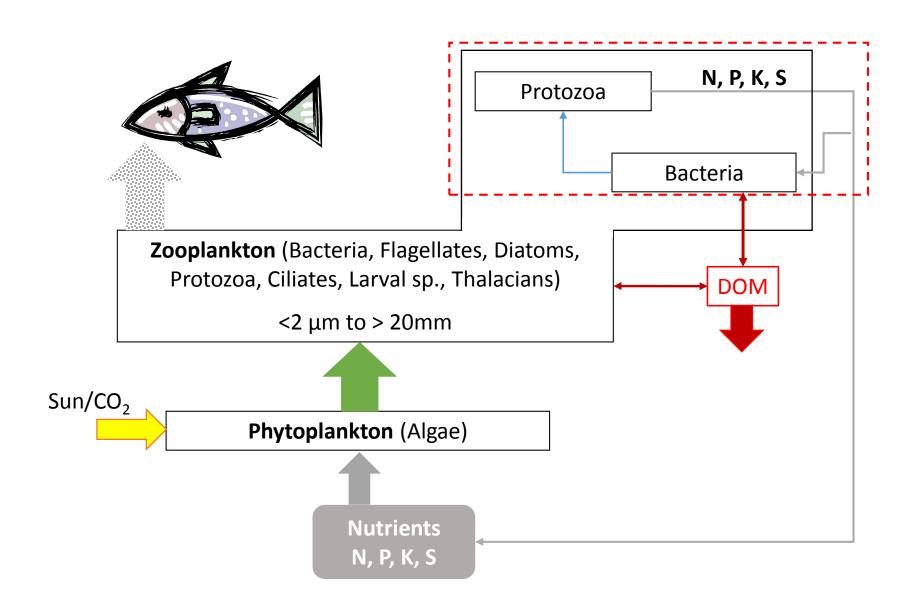
Pathogens in freshwater systems: are the *E. coli* whispering to us?

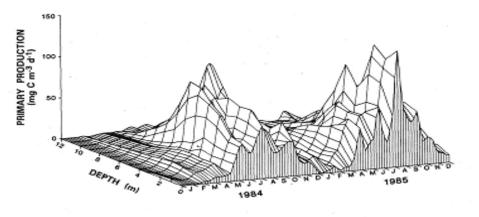
Ronald Turco
Purdue University
Indiana Water Resources Research Center
Purdue Water Community

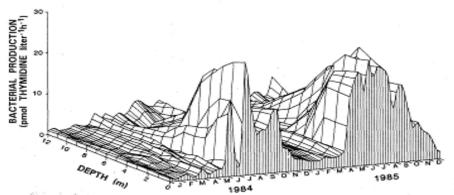

rturco@purdue.edu

@PWC_1869

Outline -


- Foodwebs of the water environment
- What are Microorganisms
 - Forms and functions
- Environmental behavior of microorganisms
- What are pathogens
- What are indicators
- Water and Bacteria in Indiana


Foodweb of Water


Decomposers of fixed organic materials (detritus) Fix nitrogen (bacterial process only) Food for higher level organisms

The real roles of bacteria

Primary Production / CO2 and Light

Secondary Activity /
Bacterial Metabolism (up to 60%)
Cell Production

FIGURE 17-2 Comparison of simultaneous measurements of production of phytoplankton (upper) and bacterioplankton (lower) in oligotrophic—mesotrophic Lawrence Lake, southern Michigan, over a 2-yr period. Bacterial production was determined from in situ rates of conversion of radiolabeled thymidine to DNA of the bacteria. (From Coveney and Wetzel, 1993.)

At the basic level, water is a microbial system Dissolved Organic Matter (DOM) drives most of the activity in streams and rivers Secondary nutrients can be limiting (N,P)

Mineral Nutrients

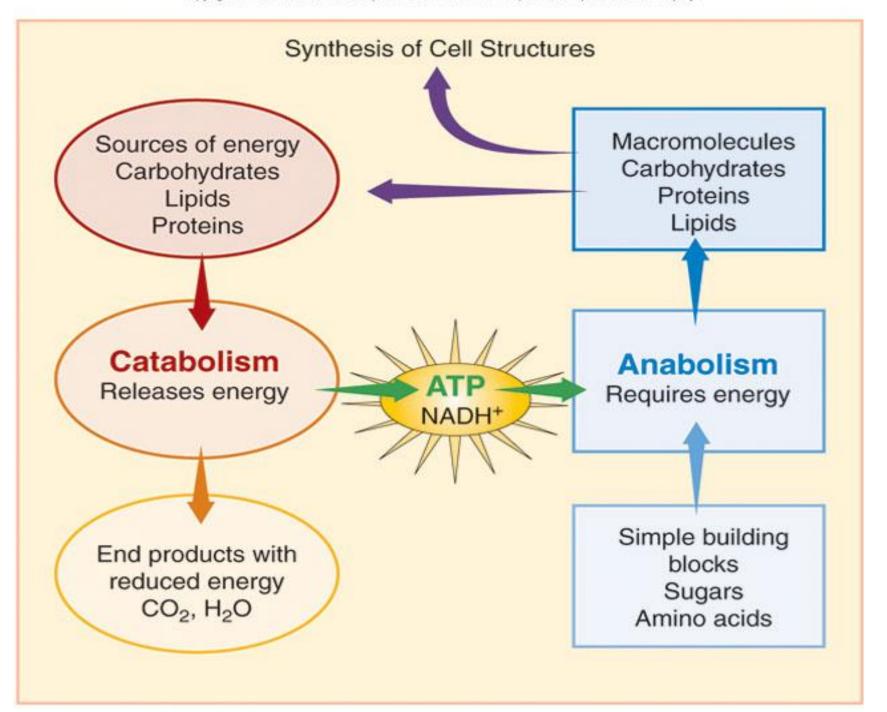
Elemental makeup of microbial dry matter

	%%%
Carbon	50
Oxygen	20
Nitrogen	14
Hydrogen	8
Phosphorus	3
Sulfur and Potassium	2
Calcium and Magnesium	0.5

Mass of one E. coli: 1×10^{-12} g

1,600,000,000 cells of *Escherichia coli* would weigh a gram.

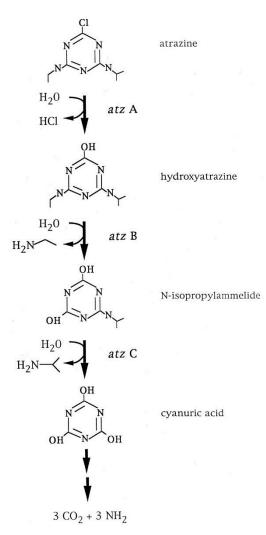
What do bacteria need to grow?


- Water (good osmatic conditions)
- Mineral nutrients (N,P,K)
- Energy sources (Carbon, Sunlight, Rocks)
- Carbon sources (CO₂ or Organic C)
- Electron donors (C, Light, Minerals)
- Electron acceptors (O₂, NO₃, Fe⁺³, Oxidize C)

Micronutrients

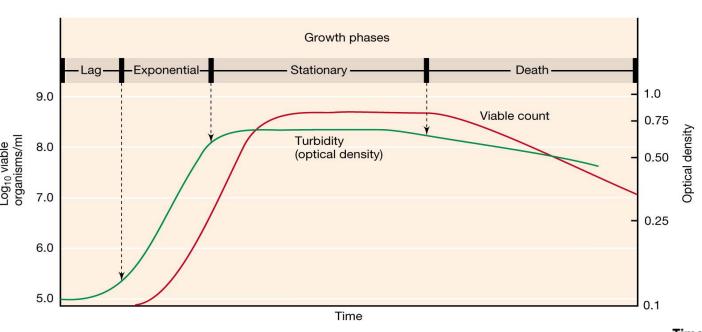
- Metal cofactors required by the microbes
 - Cofactor is a non-protein compound required to make enzymes and coenzymes
 - Fe cytochromes in ET
 - Mn dismutates and photosynthesis
 - Zn DNA polymerase
 - Cu reductases
 - Co nitrogenase
 - Mo nitrate reductase
 - Ni urease
 - Others Va, Cl, Na, B, and Se

Carbon and Energy Sources


- Phototrophs light and CO₂
- Chemotrophs organisms that obtain energy by the oxidation of electron donating materials found in their environment
 - Lithotrophs (mineral)
 - Oxidation of Iron
 - Organotrophs (organo)
 - Oxidation of dead plant materials

Enzymes – are the power!

- The organic materials (pollutants) may be degraded as a substrate (i.e. a good food source)
 - Some enzymes are specific to a particular chemical and do not degrade or transform other molecules
- Or they may be degraded via cooxidiation (i.e. the bacteria generally prefer something else but have the enzymes to partially degrade the pollutant.)
 - Other enzymes are non-specific and result in the "random" transformation of pollutants this is the explanation for cooxidation.
 - Maybe membrane bound or free


Atrazine catabolic pathway identified inPseudomonas sp. strain ADP, showing the first three enzymatic reactions encoded by atzABC (7, 17,32).

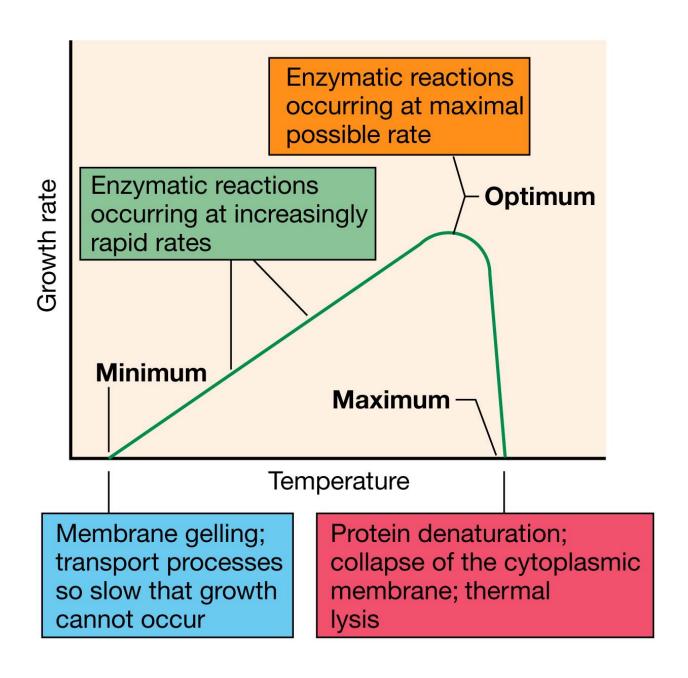
de Souza M L et al. Appl. Environ. Microbiol. 1998;64:178Applied and Environmental Microbiology

Oxygen and Nitrate

- The solubility of O_2 in water is 0.028 mL O_2 mL⁻¹ H_2O atm⁻¹ or as the more common expression 8 mg O_2 L⁻¹.
- The diffusion rate of O_2 in water is about 1 x 10^{-4} of the diffusion of O_2 in air.
- The O₂ diffusion coefficient is 2.5 x 10⁻⁵ cm² sec⁻¹ in water versus 0.189 cm² sec⁻¹ for air.
- Nitrate solubility is infinite (almost).

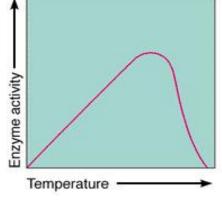
Population size is:

$$x = x_0 2^n$$

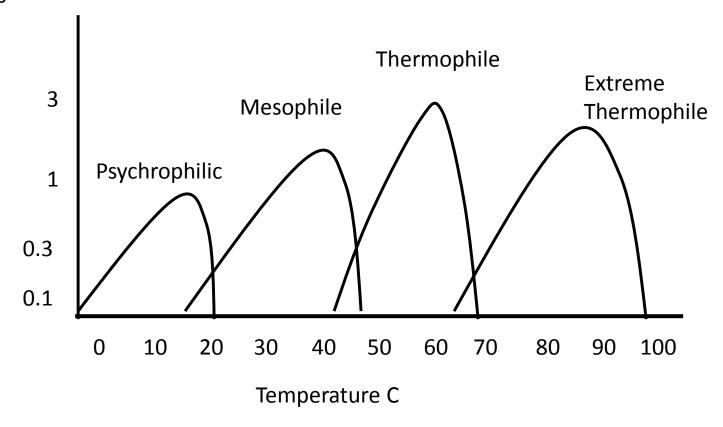

 x_0 = initial population (1)

x = final population (after time 10 hrs)

1,048,576 cells


n = no. of generations (20 generations)

Time	Number
(hours)	of cells
0	1
0.5	2
1	4
1.5	8
2	16
2.5	32
3	64
3.5	128
4	256
4.5	512
5	1024
5.5	2048
6	4096
10	1,048,576


Temperature

- Factors affecting activity
 - Enzyme activity increases with increasing temperature.
 - Activity drops when heat denatures enzyme.
 - Activity drops with cold / alters membrane function

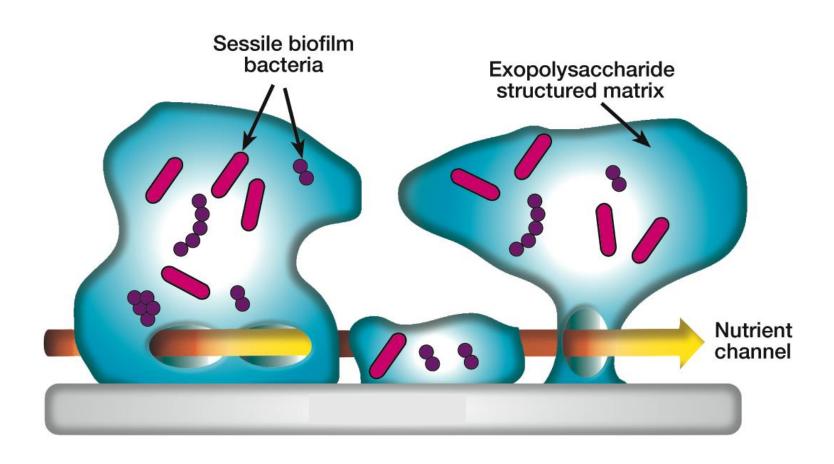
A Population Response

Generations

рН

The internal pH reflects the type of microbe:

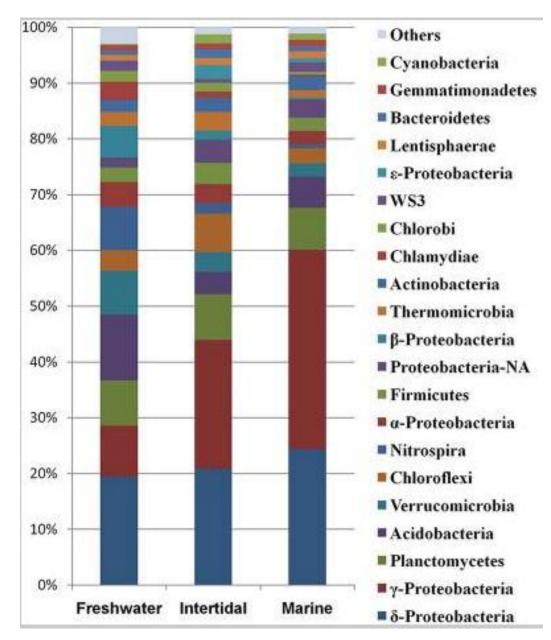
Acidophiles: 6.5 Neutralphiles 7.8 Alkalophiles 9.5


The optimal values for bacteria vary but the minimum tends to be about 4.4 and the max is some where near 9.

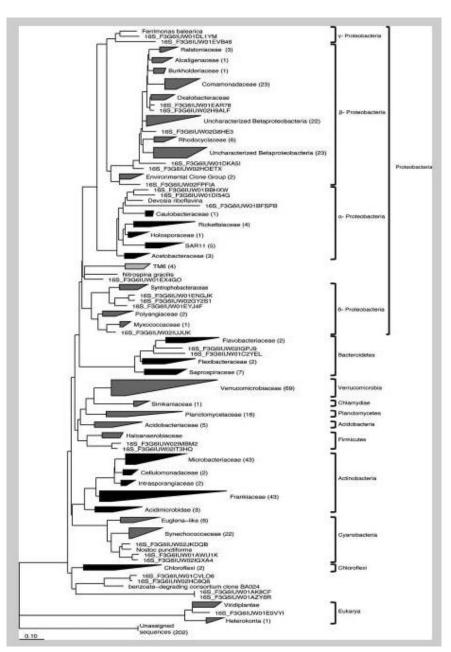
As pH goes up, metals become unavailable as pH goes down metals become very available and possible toxic

How do the residents live?

- The particle surface is a better location than the solution as the surfaces will collect and concentrate nutrients
 - This is true for cation, anions and dissolved organic materials as well.
- Enhances opportunity for genetic exchange
- Allows concentrated deposition of enzymes onto a common target
- Survival of the species in the event of colony death (a few members inside of the colony tend to stay alive).

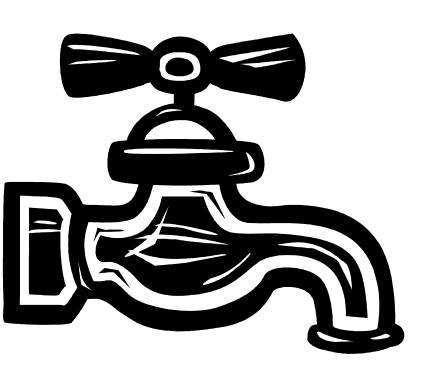

Structure of a polymicrobial biofilm on tooth/rocks/soil surface (or why do I need to floss?)

Resident Population is attached to surfaces Offers protection from the Microbial Loop



Illumina reads to Phylum level in sediments

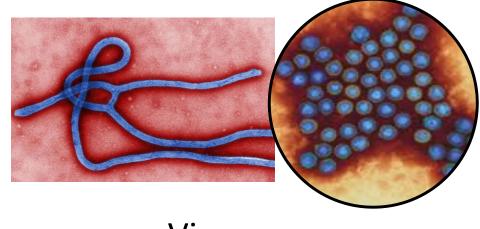
Diversity in 3 water types

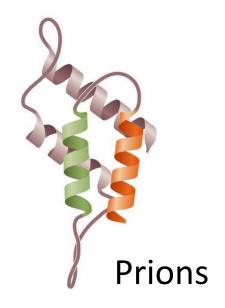

Appl Environ Microbiol. Dec 2012; 78(23): 8264–8271.

Lake Lanier, a Temperate Freshwater Ecosystem

Illumina reads to Phylum level in water

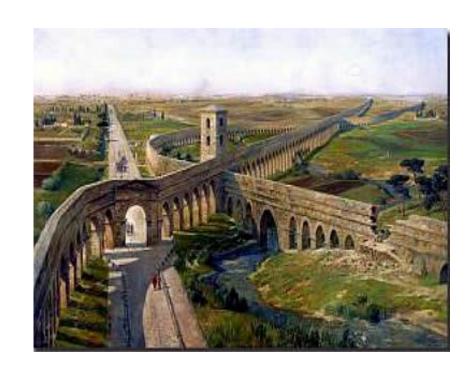

Drinking or *potable water* is water that is free from <u>pathogens and chemicals</u> that are dangerous to human health.


The Pathogens


Bacteria

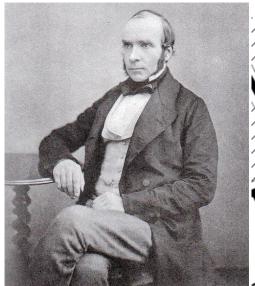
Viruses

Protozoa

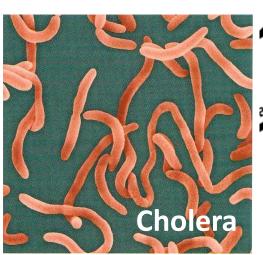


Pathogens Derived from the Greek "birth of pain"

- Pathogens: are biological agents that cause a disease (i.e., illness) in a host.
- Most Pathogens don't survive outside of their host
- Environmental Pathogens: Microorganisms that normally spend a substantial part of their lifecycle outside human hosts, but when introduced to humans cause disease with a measurable frequency.
 - Soil and Water can be a reservoir of infection.


Pathogens -- problem long recognized

- In ancient Rome (600 B.C.), aqueducts were built to supply water.
- The community employed a "<u>Water</u> <u>Commissioner</u>" to oversee to the safety of the public water supply.
- Contamination of the water system was punishable by death.



Cholera outbreak in London, 1854 Vibrio cholera

- Cholera was found to occurred in the Soho district of London, but not in all districts
 - No connection to bacteria at that time
- Over 600 people died from cholera in a 10-day period
- John Snow, used locational data and maps to show the Broad Street well was the source of contamination
- He showed an underground cesspool located only a few feet from the well was the source.
- For surface water this is occurring in Africa and other places in the world.

John Snow (1813–1858)

Andrew Hill

http://www.guardian.co.uk/news/datablog/interactive/2013/mar/15/cholera-map-john-snow-recreated

How we interact with the Microbial World

	Organism 1	Organism 2	Example
Mutualism	Benefits	Benefits	Bacteria in human colon
Commensalism	Benefits	Neither benefits nor is harmed	<i>Staphylococcus</i> on skin
Parasitism	Benefits	Is harmed	Tuberculosis bacteria in human lung
		YOU	

Overview of

Bacterial infections

Bacterial meningitis

- Streptococcus pneumoniae
- Neisseria meningitidis
- Haemophilus influenzae
- Streptococcus agalactiae
- Listeria monocytogenes

Otitis media

- Streptococcus pneumoniae

Pneumonia -

Community-acquired:

- Streptococcus pneumoniae
- Haemophilus influenzae
- Staphylococcus aureus
 Atypical:
- Mycoplasma pneumoniae
- Chlamydia pneumoniae
- Legionella pneumophila Tuberculosis
- Mycobacterium tuberculosis

Skin infections

- Staphylococcus aureus
- Streptococcus pyogenes
- Pseudomonas aeruginosa

Eye infections

- Staphylococcus aureus
- Neisseria gonorrhoeae
- Chlamydia trachomatis

Sinusitis

- Streptococcus pneumoniae
- Haemophilus influenzae

Upper respiratory tract infection

- Streptococcus pyogenes
- Haemophilus influenzae

- Gastritis

- Helicobacter pylori

Food poisoning

- Campylobacter jejuni
- Salmonella
- Shigella
- Clostridium
- Staphylococcus aureus
- Escherichia coli

__/ Sexually transmitted diseases

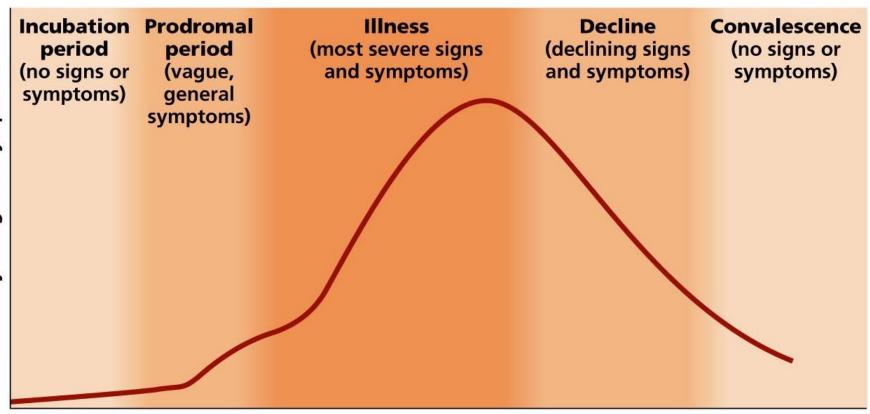
- Chlamydia trachomatis
- Neisseria gonorrhoeae
- Treponema pallidum
- Ureaplasma urealyticum
- Haemophilus ducreyi

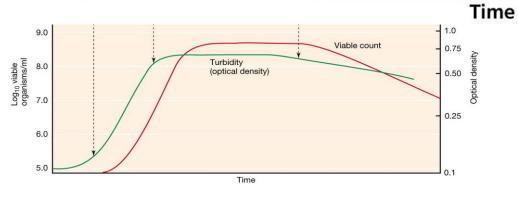
Urinary tract infections

- Escherichia coli
- Other Enterobacteriaceae
- Staphylococcus saprophyticus
- Pseudomonas aeruginosa

Bacteria and Fungi

<u>Enzymes</u> secreted by the pathogen, dissolve structural chemicals in the body Help pathogen maintain infection, invade further, and avoid body defenses

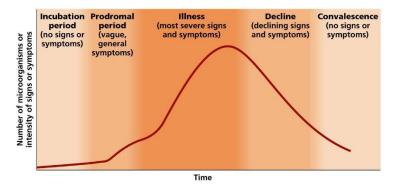

Virus


The virus reproduces by hijacking the cells of another organism (host) and getting the host cell to reproduce more viruses. This causes damage and cellular breakdown.

Protozoa

Typically water borne and the interactions occur in the hosts gut.

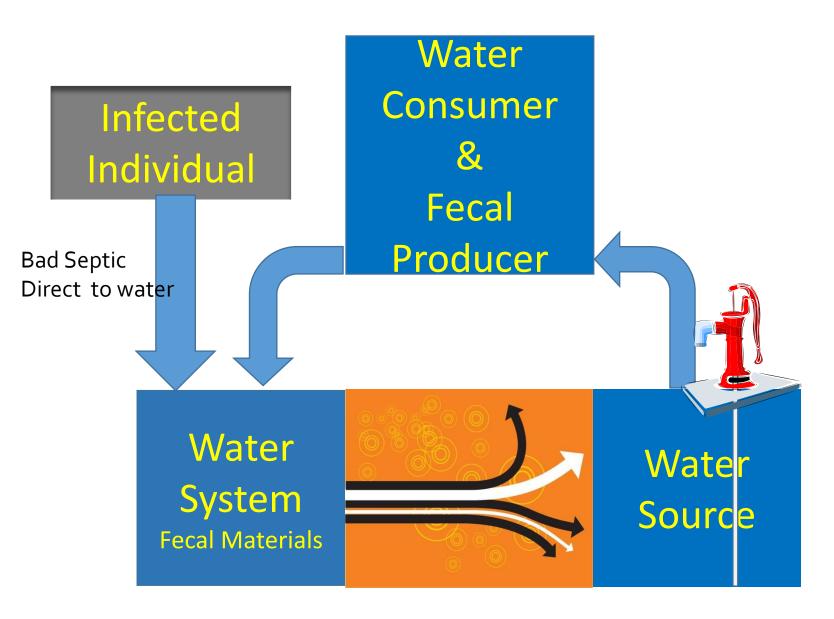
Number of microorganisms or intensity of signs or symptoms



M	Disease	Incubation Period
3	Infectious Di	seases
	Incubation P	eriods of Selected

Disease	Incubation Period
Staphylococcus foodborne infection	<1 day
Influenza	About 1 day
Cholera	2 to 3 days
Genital herpes	About 5 days
Tetanus	5 to 15 days
Syphilis	10 to 21 days
Hepatitis B	70 to 100 days
AIDS	1 to >8 years
Leprosy	10 to >30 years

© 2011 Pearson Education, Inc.


Pathogen spreads from the first host

Blood
Urine
Feces
Silva
Tears
Skin Flakes

Direct Transmission

Pass into "Living Reservoir"

Pass into a "Non Living Reservoir"

Water, soil and food can be reservoirs / vehicle of infection

In Flood Water!!

"Concentrations of Escherichia coli, intestinal enterococci and Campylobacter were measured in samples from 3 sewer flooding incidents. The results indicate fecal contamination: fecal indicator organism concentrations were similar to those found in crude sewage under high-flow conditions and Campylobacter was detected in all samples."

Water Res. 2010 May;44(9):2910-8. Epub 2010 Feb 23.

Microbial risks associated with exposure to pathogens in contaminated urban flood water. ten Veldhuis JA, Clemens FH, Sterk G, Berends BR.

Waterborne microbial disease

- Caused by ingesting water contaminated with pathogens.
- World-wide: 4 billion episodes of diarrhea result in about 2 million deaths each year, mostly children.
 - Waterborne bacterial infections may account for half of these episodes and deaths.
- In the US: Residents of periurban and remote rural areas with poor water treatment and delivery systems also are at risk.

Microbial Pathogens in Water

- Disease caused by water borne microbial pathogens have a rapid onset (matter of days.)
- It may only **1-10 individual organisms** of some microbial pathogens to cause disease.
- Intestinal cramping, nausea, vomiting and/or fever are common symptoms.
- Most bacteria make some sort of TOXIN
- The TOXIN causes the infected host to help the bacteria spread.. Vomiting, Diarrhea ect

Examples of bacteria pathogens

<u>Pathogen</u>

Salmonella typhi

Shigella spp.

Escherichia coli O157:H7

Campylobacter spp.

Legionella pneumoniae

Helicobacter pylori

Vibrio cholerae and sp.

Yersinia

Aeromonas hydrophila

Disease

Typhoid fever

Shigellosis: dysentery

gastroenteritis, can lead to

kidney failure

gastroenteritis

fever, pneumonia

gastritis

cholera

Yersiniosis: diarrhea

pneumonia

Water Related Diseases

- Treated waters in the U.S. are "usually" safe
 - Chlorine used from about 1908
 - Eliminated typhoid fever in the US
 - 98 percent of all U.S. water utilities
- Water related diseases are prevented by better hygiene, functional sanitation processes leading to <u>safer raw water</u> supply.
- Cleaner source area: cleaner water supply

What makes them pathogenic?

Pathogenicity – Or have the ability to cause disease Less than 1% of the know bacteria can cause a diseases

Virulence factor or the degree of pathogenicity

- 1. Adhesion factors
- 2. Biofilms
- 3. Extracellular enzymes
- 4. Toxins (Bacteria reproduce rapidly and may give off toxins which damage body tissue)
- 5. Antiphagocytic factors

US Water – disease outbreaks

TABLE 5. Waterborne disease outbreaks associated with drinking water (n = 16), by state/jurisdiction — Waterborne Disease and Outbreak Surveillance System, United States, 2008

State/ Jurisdiction	Month	Class*	Etiology	Predominant Illness†	No. of cases [deaths] (n = 1,672 [3] ⁵)	Type of system ¹	Deficiency**	Water source	Setting
Colorado	Mar	П	Salmonella Typhimurium	AGI	1,300 [1]	Com	4	Well	Community
Connecticut	Aug		Providencia ^{††}	AGI	55 — ⁶⁶	Com	2	Well	Apartment complex
Georgia	Sep		Legionella pneumophila serogroup 1	ARI	6 —	Com	5A	Reservoir	Hospital/Health-care facility
Illinois	Jun		L. pneumophila serogroup 1	ARI	4 —	Com	5A	Well	Hospital/Health-care facility
Illinois	0ct		Escherichia coli O157:H7	AGI	6 —	Ind	2	Well	Farm
Illinois	Sep	1	Shigella sonnei, Cryptosporidium, Giardia	AGI	41 —	Com	6	Lake	Boat
New Jersey	Aug		L. pneumophila serogroup 1	ARI	9 —	Com	5A	Reservoir	Hospital/Health-care facility
New York	Jul		L. pneumophila serogroup 1	ARI	13 [1]	Com	5A	Well, river	Seniors housing complex
New York	Aug	IV	L. pneumophila serogroup 1	ARI	19 —	Com	5A	Lake	Assisted living facility
New York	Sep		L. pneumophila serogroup 1	ARI	3 [1]	Com	5A	Lake	Nursing home
Oklahoma	Jun		Norovirus genogroup 1.4	AGI	62 —	Com	3,4	Well	Neighborhood/Subdivision
Puerto Rico	Apr		Cyclospora cayetanensis	AGI	82 —	Com	99A	River	Community/Municipality
Tennessee	Mar		Hepatitis A virus	Hep	9 —	Ind	2	Well	Community/Municipality
Tennessee	Aug	- 1	Salmonella serotype I 4,5,12:i:-	AGI	5 —	Ncom	2	Spring	Private residence
Utah	Jun		Campylobacter	AGI	50 —	Ncom	2	Spring	Camp/Cabin
West Virginia	May	ı	C. jejuni	AGI	8 —	Ind	2	Well	Private residence

Abbreviations: AGI = acute gastrointestinal illness, ARI = acute respiratory illness; Hep = hepatitis; Com = community; Ncom = noncommunity; Ind = individual; Bottle = commercially bottled water.

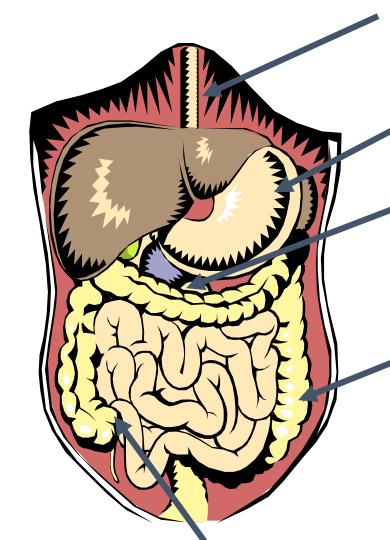
Top 5 Causes of Waterborne Outbreaks from Private Wells

- Hepatitis A (virus)
- Giardia intestinalis (protozoan)
- Shigella spp. (bacteria)
- E. coli 0157:H7 (bacteria)

Tied:

- Campylobacter jejuni (bacteria)
- Salmonella serotype typhimurium (bacteria)

What are Indicators?



E. coli

- Traditionally indicators are use to predict the presence of pathogens
- There is a "weak" tie between indicator number and the occurrence of enteric pathogens
- Indiana used fecal coliforms (still) and E.
 coli counts as the indicator for other
 bacteria

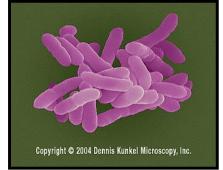
Use of Indicators

- General Microbial indicators indicates the efficacy of a process (ex. Chlorine disinfection)
- Index and model organisms- indicates the occurrence and behavior of pathogens
- Indicators of Fecal material indicates the presence of fecal contamination. They INFER the existence of pathogens

Few Bacteria

Few Bacteria (Helicobacter pylori)

Gram (+) 10⁵ to 10⁷ cell mL⁻¹ Lactobacilli & *Enterococcus faecalis*.


Gram (+) & (-) 10¹¹ cell mL⁻¹
Anaerobic *Bacteroides*, *Bifidobacterium Many others*

Gram (+) & (-) 108 cell mL⁻¹

Coliforms, Bacteroides, Lactobacilli, Enterococci

Normal Bacteria in Large Intestine and Feces is diverse Bacteroides fragilis, Bacteroides melaninogenicus, Bacteroides oralis, Lactobacillus, Clostridium perfringens, Clostridium septicum, Clostridium tetani, Bifidobacterium bifidum, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Salmonella typhi, Klebsiella sp., Enterobacter sp., Proteus mirabilis, Pseudomonas aeruginosa, Peptostreptococcus sp., Peptococcus sp., Methanogens

Coliforms

Klebsiella pneumonae

- Large bacterial group found in the environment and the feces of human and warm blooded animals. They are aerobic and facultative anaerobic, gram negative rod shape bacteria.
- Are comprised by two groups (procedural split):
 - Total Coliforms they are commonly found in feces and also occur naturally in unpolluted soils and waters. This group includes the fecal coliforms and other species of the genera Citrobacter, Enterobacter, Escherichia and Klebsiella.
 - Fecal coliforms are exclusively of fecal origin to be composed mainly of E. coli.

Representation of the Masses

■ Fecal Coliforms:

 Aerobic bacteria found in the colon and or in feces, used as indicators of fecal contamination.

History:

- U.S. Department of Treasury (1914) promulgated drinking water bacteriological standard, 2 coliforms per 100 mL (Interstate Waters only)
 - Lowered to 1 coliforms per 100 mL (1925)
- 1942, the US Public Health Service takes over
- 1957, membrane filter process for analysis
- 1974, Safe Drinking Water Act

All the Bad Guys

Salmonella spp.

Clostridium botulinum

Staphylococcus aureus

Campylobacter jejuni

Yersinia enterocolitica & Yersinia

pseudotuberculosis

Listeria monocytogenes

Vibrio cholerae O1

Vibrio cholerae non-O1

Streptococcus

Shigella spp.

Vibrio parahaemolyticus and other vibrios

Vibrio vulnificus

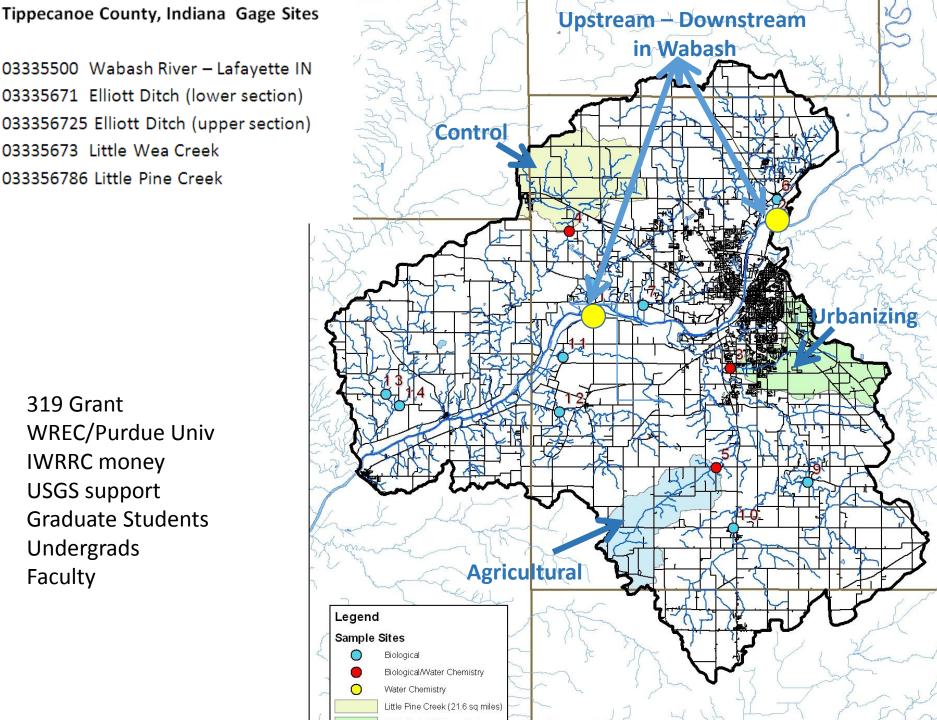
Clostridium perfringens

Bacillus cereus

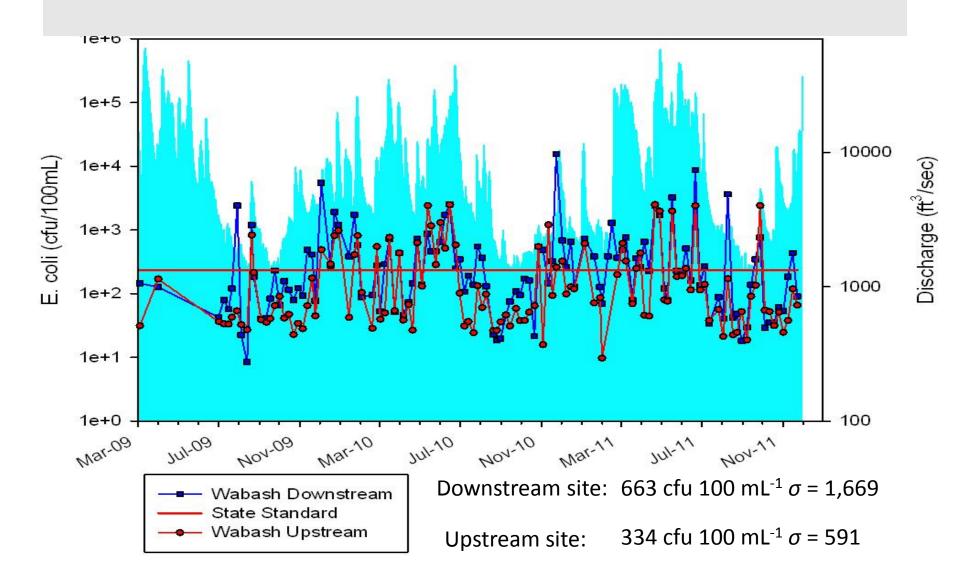
Aeromonas hydrophila and other spp.

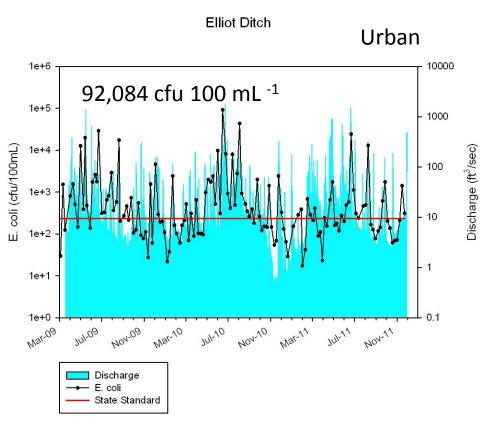
Plesiomonas shigelloides

Enterics: Klebsiella, Enterobacter, Proteus,

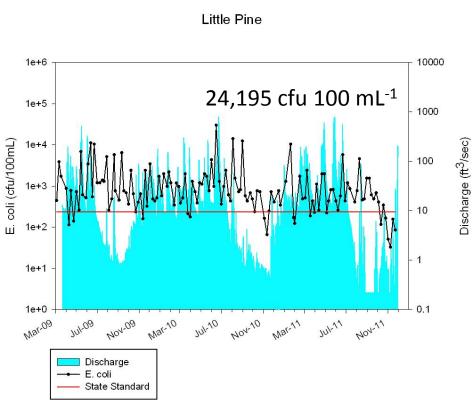

Citrobacter, Aerobacter, Providencia, Serratia

E. coli


Maybe?
Enterococcus


03335500 Wabash River - Lafayette IN 03335671 Elliott Ditch (lower section) 033356725 Elliott Ditch (upper section) 03335673 Little Wea Creek 033356786 Little Pine Creek

319 Grant WREC/Purdue Univ **IWRRC** money **USGS** support **Graduate Students** Undergrads Faculty


E. coli in the Wabash

X= 2,452 cfu 100 mL⁻¹ σ =9,444

E. coli & Small Tributaries

X= 1,671 cfu 100 mL⁻¹ σ =1,237